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GenAI Case Study - from the client

Our healthcare network, Devil May Care Health Clinics, 
struggles with high call volumes for appointment scheduling, 
insurance inquiries, and general patient support, leading to 
long wait times and overburdened staff. We need an 
AI-powered chatbot for our website and patient portal to 
streamline communication, provide 24/7 assistance, and 
integrate with our EHR and scheduling systems while ensuring 
HIPAA compliance. The chatbot must enhance patient 
experience, reduce administrative workload, and intelligently 
escalate complex issues to human staff. Can you develop a 
secure, intuitive solution that meets these needs?

- Dr. Susan Church, Chief Operating Officer at Devil May Care Health Clinics

“

”
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Requirements 
Gathering

This is actually the hardest 
part.

Don’t skip this step - 
or you’ll wish you hadn’t later.

https://www.nlpfromscratch.com


Building a 
GenAI-powered App
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Python (Web) App Frameworks for chat

https://www.nlpfromscratch.com
http://chainlit.io
http://streamlit.io


“Hello World” in Streamlit

import streamlit as st

# Title of the app

st.title("Hello, World! in Streamlit")

# Displaying text

st.write("Welcome to your first Streamlit app!")

app.py

> terminal streamlit run app.py

https://www.nlpfromscratch.com


GenAI & LLMs in 
Streamlit

streamlit.io/generative-ai

docs.streamlit.io/develop/tutorials/chat-an
d-llm-apps/build-conversational-apps

https://www.nlpfromscratch.com
http://streamlit.io/generative-ai
http://streamlit.io/generative-ai
http://docs.streamlit.io/develop/tutorials/chat-and-llm-apps/build-conversational-apps
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st.chat_input

import streamlit as st

# Title of the app

st.title("Hello, World! in Streamlit")

# Displaying text

st.write("Welcome to your first Streamlit app!")

# Create a chat input

st.chat_input("Say something")

docs.streamlit.io/develop/api-reference/chat/st.chat_input

(creates GUI element, but doesn’t do anything…)

https://www.nlpfromscratch.com
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Chat elements are methods

…

# Create a chat input & print result to stdout

prompt = st.chat_input("Say something")

print(prompt)

st.markdown(prompt)

docs.streamlit.io/develop/api-reference/chat/st.chat_input

Writes output once:
● print() sent to standard out (terminal)
● st.markdown writes to streamlit app GUI

https://www.nlpfromscratch.com
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Combine with st.chat_message

…

# Create a chat input

if prompt := st.chat_input("Say something"):

    with st.chat_message("user"):

        st.markdown(prompt

Now we have “chat”, however this also overwrites 
the very first message each time.

Streamlit constantly reruns the application to 
change state continuously.

docs.streamlit.io/develop/api-reference/chat/st.chat_input

https://www.nlpfromscratch.com
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Add LLMs 🚀 (1 of 2)

import streamlit as st

from openai import OpenAI

# Instantiate the client

client = OpenAI()

# Title of the app

st.title("Hello, World! in Streamlit")

# Displaying text

st.write("Welcome to your first Streamlit app!")

# Create a chat input

if prompt := st.chat_input("Say something"):

    with st.chat_message("user"):

        st.markdown(prompt)

Import OpenAI client

Instantiate client

Previous code (“user” role)

https://www.nlpfromscratch.com


Add LLMs 🚀 (2 of 2)

    # Get the response from OpenAI

    response = client.chat.completions.create(

messages=[{"role": "user", "content": 

prompt}], 

model="gpt-4o-mini"

)

    response_text = response.choices[0].message.content

    # Write out

    with st.chat_message("assistant"):

        st.markdown(response_text)

Get response from GPT-4o-mini

“assistant” response
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     Customizing our app

● Add system prompt to messages array

● Changing user and assistant avatars:

https://discuss.streamlit.io/t/change-default-avatars

-in-st-chat/49142

● Changing CSS and styling:

https://github.com/BugzTheBunny/streamlit_custo

m_gui

https://www.nlpfromscratch.com
https://discuss.streamlit.io/t/change-default-avatars-in-st-chat/49142
https://discuss.streamlit.io/t/change-default-avatars-in-st-chat/49142
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Conclusion - 
Looking Forward
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So much to learn…

https://www.nlpfromscratch.com


No one knows everything.No one knows everything.
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Questions?

That’s it - for now 🙂

I hope you enjoyed the course. If you 

would like to contribute to allow me to 

develop more content, please consider 

contributing at:

nlpfromscratch.com/pwyc

I will also send out a feedback form, as the 

course has concluded - let me know what 

could be improved for future courses and 

what you are most interested in learning 

next.

Thanks for coming!

https://www.nlpfromscratch.com
http://nlpfromscratch.com/pwyc
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