
Myles Harrison,
AI Consultant & Trainer

February 11th, 2025

LLMs for me

Case Study in LLMs &
Generative AI

llmsfor.me

https://www.nlpfromscratch.com
http://llmsfor.me

Agenda

Conclusion - Looking Forward

Introduction - Looking Back

A Case Study in GenAI

Building a GenAI-powered App

01

02

03

04

https://www.nlpfromscratch.com

Introduction -
Looking Back

https://www.nlpfromscratch.com

Table of contents

01
INTRO TO LLMs

02
FINE-TUNING

03
OPENAI & GPT

04
LOCAL LLMs

05
MULTIMODAL LLMS

06
CASE STUDY FOR LLMs

A Case Study
in GenAI

https://www.nlpfromscratch.com

GenAI Case Study - from the client

Our healthcare network, Devil May Care Health Clinics,
struggles with high call volumes for appointment scheduling,
insurance inquiries, and general patient support, leading to
long wait times and overburdened staff. We need an
AI-powered chatbot for our website and patient portal to
streamline communication, provide 24/7 assistance, and
integrate with our EHR and scheduling systems while ensuring
HIPAA compliance. The chatbot must enhance patient
experience, reduce administrative workload, and intelligently
escalate complex issues to human staff. Can you develop a
secure, intuitive solution that meets these needs?

- Dr. Susan Church, Chief Operating Officer at Devil May Care Health Clinics

“

”

https://www.nlpfromscratch.com

Requirements
Gathering

This is actually the hardest
part.

Don’t skip this step -
or you’ll wish you hadn’t later.

https://www.nlpfromscratch.com

Building a
GenAI-powered App

https://www.nlpfromscratch.com

Python (Web) App Frameworks for chat

https://www.nlpfromscratch.com
http://chainlit.io
http://streamlit.io

“Hello World” in Streamlit

import streamlit as st

Title of the app

st.title("Hello, World! in Streamlit")

Displaying text

st.write("Welcome to your first Streamlit app!")

app.py

> terminal streamlit run app.py

https://www.nlpfromscratch.com

GenAI & LLMs in
Streamlit

streamlit.io/generative-ai

docs.streamlit.io/develop/tutorials/chat-an
d-llm-apps/build-conversational-apps

https://www.nlpfromscratch.com
http://streamlit.io/generative-ai
http://streamlit.io/generative-ai
http://docs.streamlit.io/develop/tutorials/chat-and-llm-apps/build-conversational-apps
http://docs.streamlit.io/develop/tutorials/chat-and-llm-apps/build-conversational-apps

st.chat_input

import streamlit as st

Title of the app

st.title("Hello, World! in Streamlit")

Displaying text

st.write("Welcome to your first Streamlit app!")

Create a chat input

st.chat_input("Say something")

docs.streamlit.io/develop/api-reference/chat/st.chat_input

(creates GUI element, but doesn’t do anything…)

https://www.nlpfromscratch.com
http://docs.streamlit.io/develop/api-reference/chat/st.chat_input

Chat elements are methods

…

Create a chat input & print result to stdout

prompt = st.chat_input("Say something")

print(prompt)

st.markdown(prompt)

docs.streamlit.io/develop/api-reference/chat/st.chat_input

Writes output once:
● print() sent to standard out (terminal)
● st.markdown writes to streamlit app GUI

https://www.nlpfromscratch.com
http://docs.streamlit.io/develop/api-reference/chat/st.chat_input

Combine with st.chat_message

…

Create a chat input

if prompt := st.chat_input("Say something"):

 with st.chat_message("user"):

 st.markdown(prompt

Now we have “chat”, however this also overwrites
the very first message each time.

Streamlit constantly reruns the application to
change state continuously.

docs.streamlit.io/develop/api-reference/chat/st.chat_input

https://www.nlpfromscratch.com
http://docs.streamlit.io/develop/api-reference/chat/st.chat_input

Add LLMs 🚀 (1 of 2)

import streamlit as st

from openai import OpenAI

Instantiate the client

client = OpenAI()

Title of the app

st.title("Hello, World! in Streamlit")

Displaying text

st.write("Welcome to your first Streamlit app!")

Create a chat input

if prompt := st.chat_input("Say something"):

 with st.chat_message("user"):

 st.markdown(prompt)

Import OpenAI client

Instantiate client

Previous code (“user” role)

https://www.nlpfromscratch.com

Add LLMs 🚀 (2 of 2)

 # Get the response from OpenAI

 response = client.chat.completions.create(

messages=[{"role": "user", "content":

prompt}],

model="gpt-4o-mini"

)

 response_text = response.choices[0].message.content

 # Write out

 with st.chat_message("assistant"):

 st.markdown(response_text)

Get response from GPT-4o-mini

“assistant” response

https://www.nlpfromscratch.com

 Customizing our app

● Add system prompt to messages array

● Changing user and assistant avatars:

https://discuss.streamlit.io/t/change-default-avatars

-in-st-chat/49142

● Changing CSS and styling:

https://github.com/BugzTheBunny/streamlit_custo

m_gui

https://www.nlpfromscratch.com
https://discuss.streamlit.io/t/change-default-avatars-in-st-chat/49142
https://discuss.streamlit.io/t/change-default-avatars-in-st-chat/49142
https://github.com/BugzTheBunny/streamlit_custom_gui
https://github.com/BugzTheBunny/streamlit_custom_gui

Conclusion -
Looking Forward

https://www.nlpfromscratch.com

So much to learn…

https://www.nlpfromscratch.com

No one knows everything.No one knows everything.

https://www.nlpfromscratch.com

Questions?

That’s it - for now 🙂

I hope you enjoyed the course. If you

would like to contribute to allow me to

develop more content, please consider

contributing at:

nlpfromscratch.com/pwyc

I will also send out a feedback form, as the

course has concluded - let me know what

could be improved for future courses and

what you are most interested in learning

next.

Thanks for coming!

https://www.nlpfromscratch.com
http://nlpfromscratch.com/pwyc

llmsfor.me
Part 6 - Multimodal LLMs and Frameworks

Tuesday, February 11th, 2025

LLMsfor.me
PWYC Microcourse in LLMs and Generative AI

January 2025

End of Part 6

llmsfor.me

https://www.nlpfromscratch.com
http://llmsfor.me
http://llmsfor.me

